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PREFACE 

This report contains the results of a "Study of Quasi-Optimum Feed- 

back Control Techniques", performed during 1965 at the General 

Precision Aerospace Research Center, under Contract NAS 2-2648 

with the Ames Research Center, National Aeronautics and Space 

Administration. 

The principal investigator was Dr. Bernard Friedland; contributors 

included Dr. Frederick E. Thau and Messn. Victor D. Cohen and 

Jordan E l l i s .  
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INTRODUCTION A N D  SUMMARY 

A major limitation to the use of modem variational control theory for the design of practical 

feedback control systems i s  the need to solve a two-point boundary-value problem of ordinary 

differential equations in  real-time. In most situations, the realizationofthe exact solution to 

the two-point boundary-value problem i s  not feasible in view of the cost and size of equipment 

which such a computation would entail. Moreover, the optimum performance, in many instances, 

i s  only negligibly superior to that obtainable with a simpler, non-optimum control computation. 

For this reason most practical feedback control systems continue to be designed by conventional 

frequency-domain or cut-nd-try techniques. There i s  ample evidence, however, of the short- 

comings of conventional techniques for the design of control systems for complex processes; a 

clear need exists for design techniques which employ the modem variational approach but do not 

entail the solution of a complex two-point boundary-value problem. This need motivated the 

quasi-optimum control technique of this study. 

The basis of the technique i s  the observation that a complex process can often be approximated 

by a much simpler process for which the exact optimum feedback control law can be expressed in 

closed-form. This control law, however, may not be adequate for the actual process and must 

be corrected to account for the difference between the actual process and its simplified model. 

For this approach to be practical; it i s  necessary that the required correction be computed without 

prior knowledge of the exact control law for the actual process. 

It is  shown in Part 1 of this report that if an exact solution to the "simplified problem" can be found, 

then the required quasi-optimum control law can indeed be computed. 

In principle, the optimum control law for the exact process can be expressed by the relation 



. 
where u* is  the optimum control, x is the state of the process, u( - ) i s  a nonlinear trans- 

formation chosen to maximize the "HamiItonian" of the process, and p(x) is  the l'adiointll or 

"costate" vector which must be computed as the solution to the two-point boundary-value pro- 

blem. The nonlinear transformation (r i s  generally easy to determine; the main difficulty lies 

in computing p(x). 

expressed as 

In the technique investigated here, the quasi-optimum control law is 

U = O ( X ,  P(X)+M(X)() , e =  x - X  

where X i s  the state vector of the simplified process and P(X) i s  the corresponding adjoint 

vector. (By assumption, 

computed by means of the matrix Riccati equation 

P(X) can be computed from X .) The "correction matrix" M can be 

- k = M H ~ ~  + H ~ ~ M  + M H ~ ~  + H~~ 

where the coefficient matrices H i P  

the Hamiltonian of the exact problem evaluated at x = X . 
. HXX, are matrices of second p r t i a l  derivatives of 

A set of "auxiliary equations" 

PXJ' $ = - H  6 - H  XX 

where 9 =M5 

can also be used to determine M.  Boundary conditions for the Riccati equations and the auxiliary 

equations are obtained by linearizing the boundary and transversality conditions for the actual 

process. 

This approach is similar in some respects to a technique described by Pearson [ 1 1  . 
nique, however, i s  limited to quadratic performance criteria, and to processes in which no ''hard" 

control variable constraints are present. These limitations do not apply in our technique. There 

i s  also a close connection between our technique and the so-called "second-variation" techniques 

[2, 3, 4, 51. The principal distinctions between our technique and the second-variation techniques 

are: (1) in our technique the ''linearization" i s  performed with respect to a simplified process 

rather than a "nominal trajectory'' of the exact process; (2) in our technique the correction i s  

made to the adjoint vector rather than directly to the control variable. The latter distinction i s  

Pearson's tech- 
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particularly significant, as it permits treatment of hard control constraints which cannot be treated 

by the earlier second-wriation techniques. The use of our approach for linearizing about a 

nominal trajectory i s  described in Section 1.5, but not considered in detail. A discussion of the 

use of the technique for "mildly-nonlinear" processes is given in Section 1.6. 

The underlying assumption of the technique i s  that the difference 5 between the state x of the 

actual process and the state X of the simplified model i s  smal l .  A theoretical investigation of 

the general relationship between the magnitude of 5 and the performance of the quasi-optimum 

control law was deferred for future study. Instead, the validity of the technique was illustrated 

by means of several practical application studies, the results of which are described in hrt 2 of 

this report. 

The first example considered was time-optimum control of the linear process E +a; = u subject 

to the constraint 11.11 s 1 . This form of "Bushaw's problem" was selected to verify the applica- 

bi l i ty of the technique to a problem with a "hard" control constraint and to compare the quasi- 

optimum solution with the well-known exact solution. In applying the technique, the damping 

coefficient a was treated as a state wriable, which, in the simplified problem, was  assumed to 

be zero. The switching curve obtained by use of the quasi-optimum technique differed from the 

exact switching curve by only a few percent for a substantial range of x and 2 when a = 0.3 

(which i s  not really small). The switching curve for the simplified process, on the other hand, was 

quite far from the exact curve. From this example it would appeor that the technique i s  capoble 

of giving good results even when 6 i s  not negligible. 

The second application considered was minimum-time constant-thrust rendezvous in free space. A 

target-referenced polar coordinate system was used to describe the relative motion. The simplified 

process was obtained by assuming no relative tangential velocity; the resulting control law i s  the 

well-known one for the process j ;  = u with 1.1 = 1 , but this control law was completely inade- 

quate i f  the initial tangential velocity was nonzero. By use of the quasi-optimum control technique, 

however, satisfactory performance was achieved even for problems in which the initial velocity was 

only tangential, or when the tangential and radial components of velocity had equal magnitudes. 

Here again good results were achieved for fairly large wlues of 5 . 
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The third example treated was flight control of a flexible booster. A quadratic performance 

criterion, consisting of a weighted sum of the drift of the vehicle from the trajectory plane 

at burnout and the integral of the square of the bending moment was selected. The simpli- 

1 
I 

fied model was obtained by assuming the vehicle to be a rigid body, cnd explicit, closed- 1 
I 

form expressions for the gains were obtained. The performance of t h i s  control law was 

found to be inadequate in th presence of any appreciable flexibility. When the quasi- 

optimum control law was used, however, good performance w a s  achieved for moderately 

flexible vehicles. When the flexibility was increased beyond a certain point, then even 

the quasi-optimum control proved inadequate. 

, 

The application of the technique to minimum-time, three-axis attitude control of a space 

vehicle with small but not negligible gyroscopic cross-axis coupling w a s  considered. For 

the simplified model the gyroscopic couplings were assumed to be zero; consequently the 

simplified controller comprises three independent single-axis controls. The computations for 

the cross-axis couplings, which entail only simple but tedious algebraic manipulations, are 

not complete. 

Another example considered was guidance of a maneuverable reentry vehicle. This study 

was started late in the year and substantial effort wi l l  be required to complete the study. 

The combination of the quasi+ptimum control technique with a statistical parameter estima- 

tion technique as a method of achieving adaptive control i s  described in Section 1.6; the 

validity of the technique remains to be estnblished, however. 

Some of the theory of Part I and the first illustrative example of Part 2 was presented at the 

1965 Joint Automatic Control, Troy, New York, June 22-25, 1965 in a paper by B. Friedland 

entitled "A Technique of Quasi-Optimum Control. 'I (Preprint Volume pp. 244-252). The 

general theory, including the alternate techniques discussed in  Section 1.5 wi l l  be presented 

at the Third Congress of the International Federation of Automatic Control, (to be held in 

London, England, June 20-25, 1966) in a paper by B. Friedland and P. E. Sarachik, entitled 

"A Unified Approach to Suboptimum Control. 
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Part 1 

THEORY 

1.1 PROBLEM FORMULATION 

We begin by stating the optimization problem in the manner of Pontryagin et al [ 6  3 ; the pmcess is  

described by the system of first-order differential equations 

where x = {xo, x,, . .., x ] i s  the state vector, u = {u,, u2, .. ., u 

and f = {f f f 

of the performance. A feedback control law u = u (XI i s  to be determined which takes the process 

from m e  current * state x(t) to a final state x(T), such that the performance index x (T) i s  a minimum, 

and the remaining n states satisfy the bw~dory conditions 

i s  the control vector, 

. . ., fn ] i s  a vector-valued function. The component x of x i s  a measure 
n r 

0' 1' 1' 0 

0 

where cp = {cpl I 9, . . ., cps] , s 5 n. 

addition, the control u may be required to be a member d a closed, bounded set ZZ . 
The structure of the optimum controller can be determined by the maximum principle of Pontryagin [61. 

Define the Hamiltonian function 

The terminal time T may be either free or specified. In 

where p = {pO, pi, . . ., p ] and (') denotes transposition, and where p satisfies the adjoint 

equation 
n 

= -grad h = -h (4) 
X X 

*The current time i s  denoted by the variable t, terminal time by T; time when it i s  used as an 
independent variable i s  denoted by T ,  e.g., t <T < T . 

5 



STRUCTURE OF OPTIMUM CONTROL SYSTEM 
FIGURE I 
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tt is  seen from (1) that 

;=grad h = h  
P P 

Necessary conditions for the existence of an optimum control u* are: 

(i) h i s  maximum with respect to u c hz, that is, 

h(x, u*, P) = max h(x, u, P) 
U& 

h(x, u*, p) = const (ii) 

(iii) The adjoint vector satisfies the "tmnsversality conditions" 

where X i s  a vector of s constants 

and 

9= [; ] i = l , 2  ,..., s; j = O , l ,  ..., n 

The optimum control system may thus be conceived as having the structure shown in Figure 

transformation (I of the process state vector x and the adjoint vector p into the control 

u* =o(p ,  x) 

. The 

is  defined by (b), and i s  determined by maximizing the Hamiltonian (3) with uchz . Equations (4), 

(5) and (8), together with boundary conditions (2) and 0, define a two-point boundary-wlue problem. 

Given the current state x(t) (if a solution of the boundary-wlue problem exists), then the adjoint 

p(t) may be determined as the solution to the two-point boundary-value problem. Thus, (2), (4), (3, 
(7) and (8) define a transformation y of the current state x(t) into the adjoint p(t). For most 

applications, this trunsformation implicit in the solution of the two-point boundary-wlue problem 

cannot be obtained analytically. Consequently, it i s  desirable to develop ''quasi-optimum" procedures 

which avoid solving the two-point boundary-value problem. 

7 



1.2 QUASI-OPTIMUM TECHNIQUE 

The basis of the approach to be developed i s  the assumption that the original process can be approxi- 

I 
I 

mated by a simpler process which has the following properties: 

(A) The difference between the state of the original process and the simpler 

process i s  sma I I. 

(B) The optimum control law for the simplified system can be found exactly; 

that is, an explicit expression for the solution of the two-point boundary-value 

problem for the simplified process can be found. 

Suppose the state x can be regarded as the sum of two terms 

x = X + (  

where X i s  the state of the simplified process. Then (1) can be written 

i< +i = f(X + e ,  u) 

(9) 

Furthermore, assume that 5 
smal l ) .  Then the origianl system can be approximated by the system 

i s  small (i.e., 11 5 ( 7 )  11 < c for t < T  < T where c i s  sufficiently 

k = I' f(X + 5 ,  u) = F(X, u) $73 

where q(X(T)) = 0 . 
By defining a Hamiltonian H = P'F(X, u) , a corresponding two-point boundary value for the 

simplified system can be derived, i.e., 

k = H p  

and 

where 1\ i s  an sdimensional vector of ''slack" variables. 
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The adjoint vector P, which by assumption (B) can be solved for in terms of X, may be regarded as 

on approximate solution for p of the exact problem. 

As 5 increases, t h i s  approximation deteriorates, and may be inadequate. Consequently, it i s  desirable 

to include the effects of the state "error" 5 more exactly. For this purpose assume that a change # 
in  the adjoint vector results because of the error 5 ,  i.e., 

p = P + #  (12) 

Since p can be expressed as a function of x 

P(X) = Po( + 5 )  

by expanding about the state X, and retaining only the first two terms, we obtain 

By (12) the first term p(X) i s  the adjoint vector P o f  the simplified prpblem ; the second term i s  the 

vector 5 premultiplied by a gain matrix 

Thus (12) can be written 

The structure of a control system based on the above approximation i s  shown in  Figure 2. The suboptimum 

controller comprises three unitt: the 0 - unit which i s  the same OS determined for Figure 1 by maximizing 

h, the unit r w h i c h  transforms X into P, and the gain unit M(X) by which 5 i s  multiplied to yield 

a correction to P. 

For this method to be useful, one must be able to compute the matrix M(X) without prior knowledge 

of p = y (x), since i f  y were known there would be not need to use the approximate control law (13). 

TO obtain a relation for M, differentiate (13) with respect to time: 

= i + M 6 + M e  (15) 

Likewise 
. *  

; = X + (  

9 



STRUCTURE OF 
QUASI-OPTIMUM CONTROL SYSTEM 

FIGURE 2 
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*Substituting these relations into the canonical equations (3) and (4) and expanding about the state 

and the adjoint for the simplified process gives 

0 .  2 X + [  = h  = h p + ( H  XP + H p p M ) 5 + O ( [ )  

2 i )  + Ih [ + M i  = -hx = -hX - (HXX + HpXM)( + O(5 ) 
P 

where, 

= H'Xp 
HPX = [-I x =x 

HXX 

2 
Upon use of (ll), and after dropping terms of 0 ([. ), (16) reduces to 

. 
5 = (Hxp + HppM) 5 

0 .  

M[ + M5 = -(HXX = HpXM) 5 

Substitution of (17) into (18) gives: 

(M + MHXp + H M + MHppM + HXX)( = O  PX 

I f  this relationship i s  to hold for any ( , the matrix M must satisfy the matrix Riccati equation: 

- A = MHXp + HpXM + MHppM + HXX (19) 

It i s  evident that i f  M i s  a solution to (19) then M' i s  a solution to (19); thus, the solution to (19) can 

be a symmetric matrix. 

1 1  



1.3 SOLUTION OF THE RlCCATl EQUATION 

To use the technique described above, i t  i s  necessary to obtain the matrix M as a function of the 

state X of the simplified dynamic system. Solution of the Riccati equation (19) wi l l  give M as 

a function of the initial state of the simplified process X(t) (since the coefficients of the partial 

derivative matrices on the right-hand side of (19) depend on X(t)) and time t. In an autonomous 

system, p can be expressed as a function of x only. Consequently the partial derivatives of p 

are not explicit functions of time and the dependence of M on time must be eliminated. This can 

be accomplished by expressing t as a function of X using the solution of the simplified system. 
e 

X = F(X, u(P, X)) 

The general problem of solving the Riccati equation (19) remains. Three methods of determining the 

matrix M which were studied are described below. 

(a) General Solution - A general solution to (19) can be obtained as follows. By substituting (19) 

into (16) we obtain the system 

6 = Hxp€ + Hpp# 

6 =-HXX6 - HPx# 

when the higher-order terms are dropped. This i s  a linear system whose solution can be expressed as 

where 

i s  the "transition matrix" corresponding to: 

L-HXX -HPX 

12 



,Equations (21) are actually 2(n + 1) equations in n + 1 unknowns. To solve we need (n + 1) 

relations in addition to (21). These relations come from the boundary conditions. 

Suppose that for the exact problem the boundary conditions at 7 = T are given by (2) and (7). 

I f  in the simplified process the boundary conditions are satisfied at time T, then in the exact problem 

these conditions must be satisfied at T + dT. 

By expanding the exact state and adjoint about the time T and dropping second-order infinitesimals, 

we obtain 

x(T + dT) = x(T) + i(T) dT 

= X(T) + {(T) + k(T) dT 

p(T + dT) = P(T) + b(T) dT 

= P(T) + $(T) + kT) dT 

(P(X(T)) + @ (  (T) + *k(T) dT = 0 

(2%) 

Substituting (2%) in (2) and expanding about the state of the simplified process gives 

( 2 4  

Similarly, for the adjoint we have 

P(T) + $(T) i- 'P(T) dT = [I!--] 
LQ'X 

Since the simplified problem has been assumed to satisfy the boundary conditions of the same form, 

i'.e.' q ( X ( T ) )  = 0 and , then (240) and (24b) reduce to the n + 1 independent p(T) = ---- 
eqwtians [@::I 

*[5Cr)+kCr)dTl = O  (2%) 

9 0) + 60) dT= 'Z'Q (2%) 

Finally, we must have 

aH + #'- a p  
aH dH = 6' - ax 

= -P' 5 + X'@ = 0 



Equations (250), (2%) and (26) give a total of n + 2 relations. Since dT i s  an additional variable, 

there are just enough equations needed to solve (21) for g(t) as a function of e(t) and thereby 

obtain M(t). 

* 

In most cases, the linear differential equations (20) have time-wrying coefficients and as a result 

cannot be solved analytically. Hence, i t  becanes necessary either to apprmimate the solution to 

the Riccati equation or the integiute (19) numerically. 

(b) Numerical Solution - Numerical integration of the Riccati equation requires that boundary 

conditions (2%) and (2%) be trunslated into conditions on M(T). Consequently, (19) must be inte- 

grated backwards in t ime starting at T = T . 
the matrix M ( T )  may not exist at T = T,  hence, the boundary conditions cannot be translated 

directly into conditions on M(T). This problem may be circumvented by expressing M(t) in the form 

Port of the complexity of this problem arises because 

M(t) = S(t) - R(t)Q-'(t)R' (t) (27) 

integrating systems of differential equations for S , Q and R fora small time A backwards from 

T and using the results to compute M(T -A). 

.Let the matrix Riccati equation be of the form 

-M = MA + A ~ M  + MBM + c 
where A = H  xp I B = Hpp , C = HXX 

Suppose we lwve any solution S to the matrix Riccati equation (28), i.e., 

-5=SA +A'S +SBS + C  

Then the desired matrix M can be expressed in terms of S by (27), 

M =  s - R Q - ~ R J  

where Q i s  a symmetric (n + 1) x (n x 1) matrix and R i s  a rectangular (n + 1)x (s -t 1) matrix. 

Matrices Q and R in turn satisfy the differential equations 

-k = (A' + SB)R (30) 

To verify (27) differentiate both sides of (27) and substitute into (19). The result is 

14 



which, upon use of (30) and (31), i s  an identity. This result i s  a generalization of the result 

obtained by McReynolds and Bryson [9] . 
If Q(T) i s  singular, then M(T) cannot be expressed in the form of (27) moreover, M(T) may not 

exist. However M(T - A )  can be computed by integrating (29), (30) and (31) (backwards) from 

T = T to T = T - A  until Q(T  - A) i s  nonsingular and then using (27), i.e., 

M(T -A) = S(T -A) - R(T -A) Q-’(T -A) R‘(T -A) (32) 

From T = T - A  back, (32) can be used as a starting condition for (19). 

The boundary conditions on S , R and Q can be determined by taking the solution of the 

auxiliary system (20) to be of the form 

$ ( T ) ’ s ( T ) s ( T )  + R ( T )  p ( T )  (33) 

where Q(T)  ~ ( ( 7 )  = - R ‘ ( T )  5 (7 )  (34) 



The unknowns S(T), E(T), r(T), &T), q(T) and c(T) must be chosen to satisfy the boundary conditions I 

(25a), (25b) and (26). 

I t  is seen that (25b) i s  satisfied by making 

S(T) = 0 
c 

R(T) = CP' 

r(T) = - i (T)  

With this choice of %(T) and r(T), (37) anL (38), 

Q(T)V + q(T) dT = - 
q'(T)V + c(T) dT = F[T)E(T) 

€(T) 

(39) 

Condition (250) i s  satisfied by making 

q(T) = 

Q(T) = 0 

then (4%) becomes 

which upon use of (25b) and (26) becomes 

[$(T) + P(T) dT] t c(T) dT = - i ' (T)@(T)  

which i s  an identity for 

In summary, the required M(t) can be expressed as 

M = s - R Q - ' R ~  

where S, Q, and R satisfy (29), (30) and (31), respectively, and where the following terminal 

conditions apply 

S(T) = 0 

R(T) = [ CP' ;-I(,)] I 

16 



. 

(c) Approximation - Insome cases, i t  may valid to approximate the solution to the Riccati equation. 

Since the use of (14) to genemte the adjoint vector p i s  already an approximation, this  compounds 

the approximation," but s t i l l  may give satisfactory results. The obvious approximate solution of (19) 

i s  the asymptotic solution obtained by setting the left-hand side to zero. The solution to the result- 

ing equation 

i s  the desired approximate value of M. (This i s  similar to the proposed solution of Pearson [ l ]  .) 

An illustration of t h i s  technique i s  given in Section 2.2. Unfortunately, this technique may not 

always wok,  because (42) may not possess a nontrivial solution. 

17 



1.4 INTERPRETATION OF M 

When the adjoint vector p can be interpreted as the negative gradient of the optimum performance 

function C7I 

p = -grad V (43) 
X 

where, 

V(x) = min x (T) 
u € n  0 

obtained as the solution to the optimization problem, the Hamiltonian i s  given by: 

-h = f'(x, u) gradxV 

and (5) becomes the Hamilton-Jacobi differential equation. 

Upon differentiation of p given by (43) we obtain 

where, 

a 2V a 2V 
- =  a x  2 [w] 

Comparing (44) with (13) i t  i s  found that' 

M(X) = - 7 
ax a2v I 

I x=x 

the negative Hessian of V with respect to the state x. In this case M(X), being a matrix of 

second partial derivatives of a scalar function, of course, must be symmetric. 

Another relation which must be satisfied by M(X) i s  obtained by setting x = X in  (44). In this 

case p = P and we obtain: 

'P = M(X)? (45) 

This means that i f  P and X are the solutions to the simplified problem, the desired matrix M(X) 

must satisfy the above equation. Thus (45) can be employed asa check on the calculation of M(X). 

18 



-1.5 ALTERNATIVE TECHNIQUES 

Alternative approaches to computing a quasi-optimal control may be developed by making use of the 

relations 

and 

A technique based on t h i s  development consists of storing trajectories X(t), P(t) and M(t) in the 

controller (or by generating these quantities by integrating (1 1) and (19) with nominal initial condi- 

tions X(O), P(O), M(0)) and computing the control 

as shown i n  Figure 3. 

This technique i s  very similar to the second-variation techniques of Kelley [3] and of Breakwell, 

Bryson and Speyer [2] , except that here the adjoint vector P(t) rather than the control u(t) i s  

stored. The difference i s  relatively insignificant when u i s  a continuous function of p, but i s  of 

major significance when u i s  a bounded, discontinvous function of p. For example, i f  the optimum 

control law i s  of the form u = sgn (c'p) then there i s  no msonable.way to make a linear correction 

to the nominal control u, but u = sgn k ' (P  + M{) 1 i s  an entirely reasonable control law. 

A second method of employing the suboptimum technique i s  based on (45). 

The adjoint vector can be obtained by integmtion of (45); 
t 

p = p(0) +[ M i  dT (47) 

This relation leads to a control system with the configuration shown in  Figure 4(a). I t  i s  noted that 

the derivatives of the state variables instead of the state variables themselves are the quantities fed 

back. Hence this technique i s  particularly applicable to problems in inertial guidance, where the 

principal sensors are accelerometers. 

In the event that Z cannot be sensed, an alternative configuration can be obtained by partial inte- 

gration of (47): 
t 

p = p@) + Mx - M(O)x(O) LX dT (48) 

19 



SUBOPTIMUM CONTROL BASED ON 
STORE0 NOMINAL TRAJECTORY 

FIGURE 3 



( a )  x MEASURABLE 

L' 

( b )  k NOT MEASURABLE 

SUBOPTIMUM CONTROL BASED ON p(o), M (01 
FIGURE 4 
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The right-hand side of (19) i s  used for -M i n  (48). The control system configuration corresponding 

to (48) i s  shown in Figure 4(b); i t  i s  seen that only the state x i s  required in  the controller. 

In either implementation the matrix M would be generated by real-time integration of (19) with the 

nominal initial condition M(O), and the nominal initial adjoint state P(0) would be used. Thus, to 

achieve near-optimum performance, the actual initial state x(0)  should be reasonably close to the 

nominal initial state X(0) for which M(0) and P(0) were computed. If the closed-loop system i s  

asymptotically stable, however, the effects of using init ially incorrect values of M(0) and p(0) wi l l  

be only transient. 

* 

An example of the application of the control technique of Figure 3, in which the control variable i s  

bounded, i s  discussed in "A Unified Approach to Suboptimum Control" by B. Friedland and P.E. Sarachik, 

to be presented at the Third Congress, International Federation of Automatic Control, London, England 

June 20-25, 1966. 
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1.6 BOUNDED CONTROL VARIABLES 

When there are "hard" constraints present, such as u < 1 

puting the matrix M . The difficulty arises because H 
P 

function of the adjoint wriables -- typically u = sgn (c'p) -- and thus the partial derivatives 

do not strictly exist at the points of discontinuity, i.e., upon the switching surface. As Kalman m 
and others have pointed out, this behavior precludes identification of p with the negative of the 

gradient of V and also raises doubts about the validity of the Riccati equation (19) and the associated 

linear two-point boundary-value problem (a), (25) and (26). 

there i s  a further difficulty in can- 

generally turns out to be a discontinuous 
f -  -2 , 

As a consequence of the discontinuities in the control, some of the second partial derivatives of the 

Hamiltonian may not exist in certain regions of the state space. By applying the quasi-optimal 

procedure to the Bushaw problem, however, i t  was found that inclusion of the delta functions which 

arise from formally differentiating the discontinuous Hamiltonian function gives the correct answer. 

Details of this calculation are given in Section 3.1. 

The use of delta functions can be probably be justified by a careful limiting procedure, i.e., by 

defining a sequence of problems, each with a constraint on the control variable which approaches 

closer to the bounded constraint than the previous, and then showing that there i s  a limiting solution 

which i s  the one obtained by use of delta functions. 
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1.7 

Consider a special case of the general process 

QUASI-OPTIMUM CONTROL OF MILDLY NONLINEAR PROCESSES 

A = Ax + pf(x) + Bu (49) 

with a performance criterion 

v =  T ’ (x‘Rx + u‘Qu) d7 (9) 
t 

which i s  to be minimized, where T i s  fixed; Q i s  a positive-definite matrix; P i s  a s m a l l  para- 

meter, and f(x) i s  a nonlinear function which i s  twice differentiable with respect to a l l  i t s  arguments. 

When p =  0 , (49) becomes a linear process and, for the quadratic performance criterion (a), a 

linear feedbcck law results. The problem we wish to treat here i s  the determination of an approxi- 

mate control law when p i s  small but not zero. 

Exact Problem - The augmented state of the exact process i s  defined by 

x =  bot 7 I X, 

w i th  the following auxiliary differential equations 

. 1  
x0 = (x’Rx + u‘Qu) , i = 1 , 0 = 0 

where x i s  the performance, and x i s  the n-dimensional state vector. 

The adjoint vector for this problem i s  defined by 

0 

F =  {PO‘ PT I P I  P I 
Cr 

and the Hamiltonian i s  

h =  --(x‘Rx+u’Qu)+p7 PO +p’(Ax+pf(x)+Bu) 
2 

Application of the maximum principle gives the optimum control law as 

and this control law results in the following expression for the Hamiltonion 
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* The canonical eqwtions are thus 

1 

Ax + f(x)p - BQ-IB'p 

PO 

0 

- b = h x  = 

0 

0 

The following boundary conditions apply at the terminal time T 

x 0 (T) = minimum; Po(T) = - 1  

T ( T ) = T  pt(T) free 

x(T) free PO) = 0 

p free P p  = 0 

Simplified Roblem - For the simplified problem we take y = 0, whence 

The canonica 

Since P = 0 0 

x = ~ x o , T , X , o ]  p=[po, r ,  
equations (56) and (57) becane 

1 1 1 x = -(X'RX + - P'BQ' B'P) , i = 1 

PO 
0 2  2 

x = AX - BQ-'BR P / P ~  

P = o ,  P = o  
0 7 

P =  -PORX - A'P 

P = constant = -1 hence the equations for P and X are 0 

x = AX + BQ-'B# P 

$ =  RX - A'P 
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The solution to (59) i s  

i s  the fundamental matrix for the linear time-invariant system (59). 

Applying the boundary condition P o )  = 0, (61) gives rise to 

The gain matrix K(T, 3 can also be obtained as the solution to a matrix Riccati equation: 

substitution of (62) in to (59) gives 

i = (A + BQ-'B,K)X 

. .  . 
P = KX + KX = (R - A'K)X 

for any X. Multiplying the f i r s t  equation by K and subtracting results in the matrix Riccati 

equation 

- K =  KA + A'K + K B Q - ~ B ~ K  - R (64) 
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* Since Cp (T, T) = 0, the condition which must be satisfied by KO, 7 )  i s  21 

Quasi-Optimum Control - In accordance with the general theory, the approximate value of 

p isgiven by 

7 = 7 + i i S  
v 

where M i s  h e  correction matrix, and i s  conveniently partitioned as follows 

rn 

rn' rn 

m m' 

T o  -ox 
TT -?X 

M isan n x n matrix, m and m are n-vectors, and al l  the other quantities are 

scalars. The arbmatrices cppearing in  (&)--not a l l  of which are required for suboptimum contml 

law--are to be found with the aid of the auxiliary equations for Q and 4 ar by use of the matrix 

Riccati equation. The following matrices are required: 

xx -ox '  q b c ,  --7k 

0 X'R 0 1 

Lo 0 0 0 1  
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- 
HXX - 

0 0 0 0 
0 0 0 0 

0 0 POR (af/ax)'P 

0 o ~ ' ( a f / a ~ )  o 

The auxiliary equations for 8 and 3 are 

I t  i s  convenient to partition f and $ the same way as 2 and F, i.e. 

In terms of the subvectors of 5 and 9, the expressions of (20) become: 

The mlevant boundary conditions am 

#,cr)= Po(T) d T =  0 
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Consequently, the first row and column of the transition m ~ t r i x  and 

are zero. Also, from (694 

the matrix M in (64) 

I It i s  observed that the matrix coefficients in the homogeneous form of (71) are the same as for 

I the exact problem (59). The solution to (71) can be expressed in terms of the blocks of the fund- 

amental matrix defined in (59) and (60): 

C(T) = const = p 

Hence, (69c) and (69s) mn be written 

4 = A t  + BQ"B'$ + f@)u 

4 = - A'$ - (af/ax)'Pp 

Evaluating the second equation of (72a) at  7 = T and enploying (7%) and c/oc), we obtain I 
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Since, in accordance with (66), 

#(t) = Em€$) + M x X m  + - m p x c c  (73) 

(74) 

as 

Although the other components of f l  defined in (66) am be obtained by use of (iw) and (m), 
they are not needed for the quasieptimum control law: only p 

given by 

and p are needed. These are 0 

Po = '0 + ("30, "70' '10, m >Q 
P = p + G"&, m,, M,' m 15 

Po 
w 

-P 

Since the first mw and column of 

Po = P o = -  1 

The second term on the right-hand si& of (76) i s  a correction due to a change in time (clock error) 

and can be ignored. Consequently, from (53) the qwsi-optimum control law i s  

where rn 

has the cmfigumtion of Figure 5. 

i s  the nonlinear, vector-valued function of x defined by (75). The control system -w 



U Q-'B 4 

I' 

+ 

PROCESS 
it = A x  +pf (XI+ Bu 

QUASI-OPT1 MUM CONTROL SYSTEM 
FIGURE 5 
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Note h a t  the nonlinear feedback i s  proportional to the parameter p ,  so that the system i s  

predominantly linear, with a small nonlinear correction. 

Differential,Equation for 5 - Instead of having to evaluate m by integration of (75), 

which requires the 'P2, and (q2 matrices, i f  may be more convenient to find m 
-ctx 

a differential equation. Provided f(X) and av./aX have no impulse at 7 = T, a5) gives 

PX * 
by integrating 

Using (73) and (69b), 

Substitution of h i s  relation and $ given by (73) into (71) results in 

. .  
5 + i 5 + M 4 + m p = ~5 - ~ ' ( ~ ~ ~ e ~ +  M,S, + ItIpXp) - (a f /ax )w  

Tx 7 xx xx -crx 

Multiplying the first by M,, subtracting the second, and using the fact that [,, e,  and 

p are arbitrary, leads to the following equations 

Thus, since M, = K, (80) and y81) are differential equations by which rn* and m 

can be computed. I t  i s  of interest to note that the homogeneous form of (80) and (81) i s  

-w 

which i s  he adpint differential equation for the differential equation for the closed-loop . 

simplified process. 
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Appliwtion to a Linear Process - A special case of interest i s  when f(x) = Fx, that is, the 

nonlinear process (49) reduces to a linear process. In this case m 

and the qoasi-optimum control law (77) b e o ~ m e s  

i s  a linear function of x, 
Irx 

where 

m =Ix 
j r x  

Thus the quasi-optimum control law i s  linear in  x. This  i s  not surprising, since the exact optimum 

control law i s  also linear in x. In fact the exact control law i s  given by 

where S satisfies the matrix Riccati equation (64), with S(T, T) = 0 and A in (64) replaced by 

A +pF. Thus 

-!i= S(A + pF) + (A‘ + pF’)S + SBQ-IB’S - R (84) 

Comparing (82) and (83) however, we must have, to first order in p, 

S = K +pL 

On expanding the right-hand side of t h i s  equation and equating the constant terms and the 

coefficients of p on both sides we obtain 

- i =  KA + A ~ K  + K B Q - ~ B ~ K  - R 

- i = L& + BQ-~BJK) t (A‘ + KBQ-’B,)L + KF + F‘K 

Thvs L i s  given by a linear equation of the Riccati type, with KF + F’K os the forcing function. 

Now consider (81) with M, = K, m 
-c# 

= Lx, P = Kx and f(x) = Fx. We obtain 
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but 

; = p, + B Q - ~ B ~ K ) ~  (87) 

Hence (86) and (87) are equivalent to (85). Thus the general expressions for m 

(75) and (81) can be viewed as an extension of the linear correction considered here. 

Although the exact problem when f(x) = Fx can be solved by use of (a), there are possible 

advantages to be gained by using S = K + pL. Consider a flexible booster, for example. The 

process i s  linear (for small angles) but of quite high order. If the stiffness i s  high, however, 

then a rigid body model of low order might be a reasonable first approximation, p can be regarded 

as the reciprocal of stiffness, and L then becomes the correction due to flexibility. This  technique 

thus permits the separation of the "rigid body gains" from the "flexible mode" gains. 

Asymptotic Solution - If the terminal time T i s  infinite, then the gain matrix K for the simplified 

problem becomes a constant Km (when the process i s  observable and controllable) that i s  the 

asymptotic solution to the Riccati equation (64) can be obtained, and by setting the left-hand 

side o f  (64) seqwl to zero. The asymptotic expression for m 

as F a  of (75). It i s  tempting to assume that the asymptotic solution for m 

by setting M 
xx l.rx - ILX 

procedure i s  incorrect, since in the case m 
-crx 

symmetric. The reason i s  that (81), with M 

loop system) which does not possess an asymptotic solution. To find the asymptotic solution, i t  

i s  necessary to solve (79) and (81) concurrently. It i s  noted that m (a, 7) depends on x(T), 

so it i s  not feasible to solve (79) and (81). The integral form (75) however, may be capable of 

being evaluated i f  f(x) i s  a simple analytic function. 

given by 
-crx 

i f  i t  exists, is  given by the l i m i t  

can be obtained 

= 0 in (81), andsolving for m . Unfortunately this 

-p x' 

-P 
equal to KoD and m 

= Lx, i t  results in  a L matrix which i s  not 

= K-, i s  the adjoint to a stable system (the closed 
xx 

-w 
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Rlrt 2 

APPLICATIONS 

In  order to verify the wlidity of the quasi-optimum control technique and to obtain sane 

qualitative insight into some of the difficulties and limitations of the method, a number of 

"practical" problems to which the technique appears to  be applicable were studied. The 

word "practical" is  enclosed in quotation marks here to emphasize that even the equations 

(1) for the exact model entailed a considerable simplification of the actual physical be- 

havior of the process; the simplified model (lo) i s  a s t i l l  further simplification. In a l l  cases 

considered the further simplification led to a lower-order system of differential equations. 

No theoretical difficulties were encountered in any of the examples studied; the algebraic 

calculations, however, although straightforward, were quite tedious and involved. Con- 

sequently progress was s law and calculations had to be checked frequently. 

The following problems were considered: 

1. Bushaw's Problem 

2. 

3 .  Flexible Booster Attitude Control 

4. 

5. Minimum-Miss Distance Maneuvering Reentry 

6. Adaptive Control 

Minimum-Time, Bounded Acceleration Rendezvous in  Free Space 

Time-Optimum 3-Axis Attitude Control of a Space Vehicle 
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2.1 BUSHAW'S PROBLEM 

The first illustrative example i s  the 88classicaI't minimum time prablem for a plant having the transfer 

function l/s(s +a) with a bounded control wriable. 

Exact Problem - The sytem i s  governed by the following differential equations 

so = 1 

s1  = - x  x + u  

s2 = x l  

s3 = o  

1 3  

It is  desired to minimize x (T) with 0 
x1~)=x2(T)=Oanct l u l s  1 

The Hamiltonian for the complete problem is: 

and the maximum principle gives 

The corresponding adjoint equations are 

b2 = o  

Simplified Problem - Since k = 0 , x3 = a = constant from the exact problem. The simplified 

problem is obtained by taking x3 = a = 0 , to which the transfer function 1/5 

the equations for the simplified problem are (1-1)-(1-5) with x = 0 . Hence 

2 3 
corresponds. Thus 

3 
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po = Po = -1 = constant 

p1 = P1 = Pl0 - P2t , PlO=constant 

= P =constant 
p2 2 

I 
I where t is  time measured from the (arbitmry) starting instant. Thus, 

u = sgn (Plo - P2t) 

u , t c Plo/P2 = tS =i -u, t >  Plo/P2 

I where , 
I 

(1-7) 

Substituting (1-7) into (1-1) and integmtirlg to the terminal time T, results in the following relatiars. 

X,(T) = Xl0 + U(2t - T) = 0 
S 

I X2(T) = )&, + XIOT + U 2 - U(T - tS)' = 0 

The simultaneous solution of (1-8) for the time-togo T and t gives, after dropping the subscript 0 , 
5 

I! T = -UX1 + 2 (1  2 1  X2 - UXG 

t = - =  p1 -UX1 + (4 x: - UX2) ?! 
p2 

But , from (1 -3) , 
H = - l + P I U + P X  2 1  = O  

which, together with (1-9) yields 
x, 

1 

1 2  P1 = u -  
(TX l  - UX2P 

U 
p 2 =  ( - x  1 2 -ux2)* 

2 1  

(1-10) 

(1-1 1) 
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The switching curve is  given by P = 0, or, from (1-1 1) 1 

- 

x = - T U X l = f - X  4 2 1 2  
2 2 1  

0 0 1  

0 0 0 

as i s  well-known. 

(1-12) 

Quasi-Optimum Control Law - The quasi-optimum control law wi l l  be taken as 

u=sgn (P1 + m  x ) (1-13) 13 3 

where P 

Next, we wish to compute the gain matrix M . The matrices appearing in the Riccati equation 

(19 ) are obtained by performing the required partial differentiations on the exact Hamiltonian 

(1-3) aind everluating at x = X . The results are: 

i s  the component of bhe adjoint vector corresponding to x '  in the simplified problem. 1 1 

p 0 0 0 1  
0 0 0 -xl 

1 0 0  HXP= 

IO 0 0 

to o o 0 1  Lo -xl 0 

P o  O O 1  b o o  
0 0 0  

0 0  0 0 0  

10 -P1 0 

where P1 = P,(t) isgiven by (1-6), and 

t r  t 
S 

S 

Xl0 + ut 
xl(t) = i Xl(tS) - ut t 2  t 

0 

0 :I 
0 - P I  
0 

0 

(1-14) 

The term 26 (P,) is  an impulse (delta function) occurring at the instant that P,(t) = 0, i.e., 

at t = t . It i s  the treatment of this impulsive term that we wish to illustrate in prt icular by this 

example. The gain matrix M(t) wi l l  be computed by utilizing the auxiliary system (20) for the 

Riccati equation along with the transition matrix (22 ). There i s  no loss of generality in taking the 

initial time t = O .  Hence the fundamental matrix can be written 

S 

@ ( T I  0) = 0 0 ,  t:)@(t:, t-)@(t;, 0) 0 < t S < T (1-15) 
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~ 

+ 
Were it not for the impulsive term, @(ts , t-) would be the identity matrix, but in the present case 

S + 
@(ts , t'> contains off-diagonal terms resulting from the impulse. 

To compute 00 , t ) and @(ti, 0) , we can ignore the impulsive term. To facilitate the cmpu- 

tation of these matrices we write (20) in component form 

S 

+ 
S 

io = 0 $,=O 

i2 = 5 ,  J;2=0 

i ,  = -x15, +26(Pl(WJ, 

3 = o  

Jr 1 = pit3 - 9 2  

4, = p , e 1 +  x19, 

These equations can be integrated with l i t t le difficulty from t to t' 
solutions can be expressed as 

5 

t(t;)=@,,(tsr 0)5(0) +G12(tS. O)Q(O) 

0 0  
1 0  

1 

0 0  
tS 

0 
0 

0 
2 

y s / 2  

0 
2 - Xl0tS - Ms/2 

- X,ot: - M:/6 

1 

0 
2 

p2ts /2 

0 

t3/6 S 

+ 
5 

andfrom t to T. The 
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0 

0 XIOt S + ut S 2 /2 - X10tS/2 2 - 5 3 16 Ij 1 

0 

- t  

1 

1 0  

0 1  

0 0  
5 

0 0 
1 0 

7 1 

0 0 

0 

0 

0 
- 9 2 ”  

0 
1 

0 

UT 2/2 

0 

- h 2 / 2  

- h 3 / 3  

1 

- Up2’ 4 /6 

0 0 

0 

0 0 
0 

0 

0 
- 7  

1 

Next we must calculate the transition matrix @(t I ts-, 

The impulsive term appears in only one differential equation of the set (1-16): 
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. The integrand of the first integral on the right-hand tide of (1-16) is  continuous and hence the 

integml wnishes as t - t' i- 

s t  
To e w l w t e  the second integral we employ the formula [8] 

6 (t - tt) 
t-c t < t: b(pi(t)) = 5 l i  (t,) I 

But I il(ts)\= Up2' P# from (1-1 1). Hence (1-17) becomes 

and 

Finally, on performing the matrix multiplication indicated by (1-15) we obtain O(T,O) with com- 

ponents given by 

0 0  

1 0  

T 1  

0 0  

0 

2u/5 

2UT/5 

0 

- 
0 

-XIOT + UXld2 

-X10T2/2 + X,$/6 

1 

0 

0 
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0 0  0 0  

- Up2XloT 0 C 

4 3 
where C = %XIOts(T - ts)/2 + U5(T - t S ) /6 + t S /6 

1 0  - UX122 - X10/6 

TO obtain the gain matrix M, we now make use of the boundary conditions (25) and (26) which 

result in I 

, 
1 
1 

$(T) = -l$(T) dT = U dT I 

I 
Ep(T) = -40) dT = 0 

$,(T) = - i ( T )  dT = 0 

$,(T) = -$(T) dT = 0 

p2cT)t10) - U#,(T)=O 

respective I y . 
Using these relations with the fundamental matrix @ ( T I  0) previously calculated, and then elimi- 

nating T and t by use of (1-9) we find the relations between $io and tie: 
S 
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where 

3 3  = -U P2 X l d 6  m23 

m31 = { X 1 2 6  - P2Xli +Xl0 

m32 = -U P2 3 3  X l d 6  

= U(P 3 6  X /18 - P2X$2 +2X,d3 3 - P i 3 1  3 m33 2 10 

I The 3 x 3 matrix above gives the elements m ( O ) t , J  = 1, 2, 3 .  (The mot=mtO terms 
I tj 

are 

0 everywhere in (1-18) and thus obtain the relation between 9 = 9 (t) , 5 = t ( t )  for and X = X(t) . 
obviously zero and not needed.) Since X and Xm are arbitmry,we can drop the subscripts 10 I 

, 
I Consequently the last three rows and columns of M(X) are given by the matrix in (1-18). 

Only the element m 

which thus becomes 

of the above matrix is  needed for the quasi-optimum control law (1-13), 
I 13 

(1-19) 2 
u =sgn [P 1 6 2 1  + (1 p3x4 - p2x1 +xl) a] , a = x  3 

where P, and P2 given by (1-1 1). The approximate switching curve i s  obtained by setting 

the bracketed expression in (1-19) equal to zero. The resulting switching surface i s  the curve labeled 

QUASI-OPTIMUM in Fig. 1-1, for a = 0.3. 

Comparison with Exact Solution - The exact problem in this case admits an analytic solution which can 

be compared with the control laws for the simplified problem and the quasi-optimum control law (1-19). 

The exact solution i s  obtained as follows. The canonical equations (1-1), (1-4) and (1-5) can be 

integrated explicitly over the interwl [t , T I  . Equating the results to the corresponding terminal con- 

ditions results in 
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QUASI -/ 
OPTIMUM 

-6 -5  -4 -3 
x 2  

FIGURE 1 - 1  

I 

/EXACT 

I 

- I  

COMPARISON OF EXACT AND 
QUASI - OPTIMUM SWITCH CURVES 

FOR BUSHAW PROBLEM 
a =  0.3 

5 

4 

3 

X I  

2 

I 
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. 
X3ts QT 

- e  - 1 )  U O = X  (T) = x l  +- (2e 
x3 1 

x t  
-x37 3s 

x3 x3 x3 

-x T 

0 = x2(T) = x + x l + - [ - -  u 1  ~ + 2 t  + e  3 ( 1-2e 11 
x3 S 2 

a = x3(T) = x3( = constant) 

- 1 = po(T) = po( = constant) 

-X37 

x3 
11 x3T 1-e 

Pl(T) = e  [P, - Pp( 

p2(T) = p2( = constant) 

where 7 z T - t  

p2 1 '%I ( 1 - p1x3 
1 t = -  

x3 

Using these relations and the Hamiltonian (1-3) we obtain 

2 1  s 
T = -u(xl +ax 2 +a a 

ax ,(S-2) 

(aUxl - 1)(S - 1) p1 = u -  

where aU(x 
s = 1 + [ ( a h l  - l ) e  

+ ax2) 1) 
+ 11 
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The exact switch surface i s  given by setting p = 0 and i s  found to be 2 

log (1 +aUxl) 
- x 1  

x 2 - - - + -  a 2  a ( 1-20) 

and i s  the curve labeled EXACT in Figure 1-1. I t  is  seen that the exact and approximate curves differ 

by less than one percent for x1 < 4, whereas the curve which would be obtained for a = 0 differs 

considerably from the optimum. 

I t  i s  also of interest that the expression obtained by expanding the exact switching curve (1-20) in a 

power series in a, namely 

1 2 1 3 1 2 4  
= - - U x  +-ax - - U a  x l+  ..., x2 2 1 3 1 4  

and retaining only the term that i s  linear is a very poor approximation for ax2 > 1 m, in this case, 

for x 1  > 1.73. In fact the curve is  not even single-vulued. 
1 
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2.2 MINIMUM-TIME, BOUNDED ACCELERATION RENDEZVWS IN FREE SPACE 

il =x?x2 +ul  

- 
x2 -xl 

i3 = -x 1x3/x2 + u2, 

u 1 = c o s 8 , u  = s i n 8  2 where 

The problem is then to minimize x (T) subject to the constmint 0 

u + u  = 1  

The Hamiltonian for this problem is 

2 2  
1 2  

h =Po +p1(~$2 + u $  + P f 1 +  P3(-xiX3/y2 +u2) 

A 

The second example chosen to illustrate the quasi- optimum control technique was that of 

rendezvous in free-space (zero-) in minimum time. 

I Exact Problem - 
polar coordinate system (see Figure 2- 1) as fol laws 

The motion of the vehicle relative to the target is described in a target-referenced 
I 

1 

I 2 d2r/dt - r drp/dt = f /m 

r d2cp/dt2 + 2 (dr/dt)(drp/CIfl= $/m 

r 
I 

i 
Define a new set of variables a5 follaws I 

xo = t x = (dr/dt)/a , xz = r/a , x3 = r (dcp/dt)/a 

where the acceleration a = f/m . 
In terms of these new variables, the equations of motion become 

Go = 1 
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I f/m = a 

TARGET 

TARGET REFERENCED 
POLAR CO-ORDINATE SYSTEM 

FIGURE 2-1 



. Maximization of h with respect to u and u subject to (2-4) results in the following steering law 1 2 

and 

Using these vulues of u and u along with the condition that p E - 1 in h, yields 
1 2 '  0 

Simplified Problem - Suppose that the initial tangential velocity is zero. Then the optimum solution 

evidently is  to apply the acceleration along the initial radius vector pointing either toward or away 

from the origin in accordance with the we l I4nwn  solution for the one-dimensional process 

d x2 /dt = u1 (Bushaw's Problem). 

If the initial tangential velocity is suitably small, it is reasonable to use the solution of the one-di- 

mensioml problem as the basis for an approximate solution to the two-dimensional problem. Thus 

we select as the state of the simplified process 

2 2 

x ={xo'x, 'x* '  o j  (2-8) 

(Note that 6 ,  is the approximate change in performance due to the simplification). 

For the onedimensional problem the Hamiltonian i s  

H = Po + PIU + P&, (2-9) 

where P =  [ Po, P1, P2, 01 i s  the adjoint vector in the simplified problem. The maximum principle 

applied to (2-9) gives 

U = sgn P,(t) (2- IO) 

The adjoint equations for the simplified problem are determined by using (2-9) in the canonical 

equations dPt/dt = -H/aX, and are 
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Po = o  

P, = -P2 

P* = o  

Po = -1 

P1 = Pl0 - Pat 

P2 = Pat 

Integrating (2-1 1) results in 

where Plo and Pa are constants and t i s  time measured from the (arbitrary) starting instant. The 

optimum control law for the simplified system (2-10) becomes 

U1 = sgn (Plo - Pmt) 

u, t P1O/Pm = tS 

u1 =I -u, t >  P1O/Pm 

where u = sgn (pldpa) = 1 

Substituting (2-12) into (2-2) with x 0 and integrating to 3 

(2- 1 1) 

1 

(2- 12) 

he terminal time T,  results in 

expressions for x (T) and x (T) as functions of T,  t 1 2 S 

pneously for T and t 

the initial adjoint wriables in terms of the initial state variables. 

and the initial conditions. Solving simul- 

and utilizing these along with (2-9) results in the follawing expressions for 
S 

plo = u -xldc(1;/2 - UX&) a (2- 130) 

pm = u 4 2 2  - U%)* (2- 13b) 

Since the initial state is arbitrary, dropping the subscript zero in (2-13) results in the general re- 

lations for the adjoint wriables in terms of the state variables. Substitution of (2-1%) into (2-10) 

leads to the well-known control law for the simplified problem. 

50 



. If the initial tangential velocity i s  not absolutely zero, hawever, this control law i s  unsatisfactory 

for the original problem because no tangential acceleration is ever produced. 

initial angular momentum is conserved, and as the radial distance decreases the tangential velocity 

increases until the vehicle either orbits the origin or escapes entirely. Satisfactory performance can 

be achieved only by use of a tangential component of acceleration. 

As a result the 

Quasi-Optimum Control Law - In the qwsi-optimum control law the radial and tangential compo- 

nents of the normalized acceleration are given by (2-6), in which approximate vulues of p 

p are used. These approximations are given by 

and 1 

3 

t = l , 3  (2- 14) 

From (2-8) however, 5 = 5, = 0 and 5, = x3 ; hence (2- 14) becomes 

- . .  * (2-16) 
p3 - m3050 "'3353 

and m in the matrix M are needed. These are calculated wi th  m13' 33 Thus only m10 , 
the aid of ( 19). The coefficient matrices H 

forming the required partial differentiations on the Hamiltonian for the complete problem, given 

by (2-7), and evaluating the result at x = X, 

Hpp appearing thereon are found by per- 
XX'**.' 

i.e., for x I 0. The results are 3 

0 0 0 0  

HXX -1 - i :  0 : I  2 P 1 4  

HXP = H'pX 

0 

=~ 

PP =[ 
0 

0 
0 

0 ~l U/Pl 

The result of substituting these matrices into the auxiliary system (20) expressed in component form, 

I S  
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io = o  (2-17a) . 
(2- 1%) 

(2- 17c) 

(2- 17d) 

(2- 17e) 

(2- 17f) 

$ 2 = 0  (2-179) 

3) 3 = -(2 p1D 2) 53 + (X 1D2)#3 (2- 17h) 

Note that the equations for #, and 5 
quadratures). Thus 

are uncoupled from the others (which can be integrated by 3 

So(T) = 5,(0) = const. (2- 18a) 

5 ,  (T) = 5 (0) = const. 

t2m = 5 ](t)T + S20) 

(2- 18b) 

(2- 18c) 

S3Cr) = a(t)t3(t) + b(t)#3(t) (2- lad) 

%(T) = Il,(t) = const. 

#lo) = - q ) 7  + S,(t) 

(2- 18e) 

(2- 18f) 

= #2(t) = const. (2- 189) 

g(T) = C(t)5,(t) + b(t) g ( t ,  (2- 18h) 

where 7 = T - t  

The above are subject to boundary conditions (25) and (26) which, for this problem, become 
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5 ,(TI = -Xl(T) dT = (sgn P,) dT (2- 1%) 

s2(T) = -k2(T) dT = 0 (2- 1%) 

Jlo(T) = -io(T) dT = 0 (2- 19c) 

$3(T) = -b3(T) dT = 0 (2-19d) 

From (2-18e) and (2-19c) we ebbin #I 0 0 and hence m 

(2- 19d), $I, (t) i s  only a function of 6 (t) , therefore m3 = 0 . By symmetry of MI 

Thus the only non-zero component in (2-15) and (2-16) is m33. Thus (2-15) and (2-16) become 

= 0 . From (2- 18h) and 0 Ot '"JO 
= O .  m13 = 9 3  3 

P1 = p1 (2-206) 

and p3 =m33X3 (2-20b) 

TL r-maininq coefficient mq3(t) i s  given by (2-18h) and (2-19d): m33(t) = Jl3(t)/t3(t) = -c(t)/b(t) . 
To obtain c(t) and b(t) , however, the time-wrying seuad -..!:: :;-*em (7-17d) and (2-1%) must 

be solved. We were unable to solve this system and accordingly obtained a scalar Riccati equation 

for m through use of (2-2Ob): 33 

- dm 3 3/dt = -(2Xl/X2)m33 + (U/Pl)rn3i + 2P1/X2 (2-2 1) 

Since this equation i s  equally intractable, an approximate solution was obtained by assuming 

dm / d t =  0; i.e., 33 
(2-22) 

where P, and U are given by (2-130) and (2-12), respectively, (with the zero subscript omitted). 

The choice of the plus or minus sign of the square root term in (2-22) was resolved by recognizing 

that in order to get the proper acceleration direction the sign of the square root term must be negative. 

(e.g., for x = O  and 5 = 1.0, U = -1.0; the negative square root then gives the proper retarding 1 
effect on x .) Hence, use of (2-22) with the negative sign in (2-20b) and (2-200) in  (2-6) results 

in the following quasi-optimum control law. 
3 

(2-23) 
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* (2-24) u2 

(T'he square root term of (2-22) has been eliminated by use of (2-13b)). 

Performance with Quasi-Optimum Control law - The performance of the control system using the 

qwsi-optimum control law (2-23) and (2-24) was simulated with the aid of a digital computer. 

For purposes of canparison, the performance using the control law for the simplified problem (2-12) 

was also simulated. Trajectories for three initial conditions are shown in  Figures 2-2, 2-3, and 2-4. 

The unsatisfactory performance with the controller for the simplified problem i s  evident. By using 

the quasi-optimum controller, however, the rendezvous i s  achieved for a l l  practical purposes: 

the vehicle i s  steered very close to the target and the velocity is  simultaneously reduced very 

nearly to zero. 

It should be noted that this good performance was achieved even though the initial tangential 

velocity was not small, as i s  clear from the size of the excursion from the initial radius vector. 
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2.3 FLEXIBLE BOOSTER ATTITUDE CONTROL 

The problem of controlling the attitude of a flexible booster was chosen as another illustrotion of 

the quasi-optimum control technique. For simplicity we have selected a model with only a single 

bending mode present and with negligible actuator dynamics but the technique can readily be 

extended to include actuator dynamics and more bending modes. 

simplified problem i s  that the flexible booster can be represented as a rigid body. A first-order 

correction i s  then applied to account for the flexibility. 

The basic assumption for the 

Exact Problem - The dynamic model for the exact problem is taken to be two rigid homogeneous 

sections, each having its own physical and aerodynamic characteristics linked by a torsional spring. 

(See Figure 3- lo). 

The linearized equations of motion for section 1 of the dynamic model are given by 

m G  1 lx = T - h + f e l -  Dl - 1 

m G = T ( 8 1 - 6 ) - h B 1 - f + L 1 - D 1 y 1  
1 1Y 

J 1 K 1  =T6g1 - f ( t l  - g 1 ) + C a ( B 2 - e 1 ) + ( L 1  -D,y l+D181)s1 

and for section 2 are given by 

m G  = h - f e l - D 2 - L e  
2 2x 2 2  

= h B l + f + L 2 - D 2 y 2  
m2V2y 

~~b~ = -fg2 + (b - ca)(e2 - e 1) + ( L ~  - D2e2)S2 2 

where the above pornmeten are illustrated in the free body diagram of the c;namic model 

(See Figure 3-lb). Due to the interconnection there are two position constraints on the booster 

X l + t l  - 9 1 = x 2 - 9 2  

Y 1  + (k 1 - g p  1 = Y2 -920 and 

in  the x any y directions respectively. 
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Differentiating the above two equations twice with respect to time yields the following two 

kinemotic constraints an the accelerations: 

Glx = G& 

v - G = (4 -gl)iil +g28; 
2Y 1Y 

Using (3-1) and (3-4) in (3-7) and solving for h yields 

h = fe + m1m2[T/m - (D1 + Lle l)/m + (D2 + L202)/m21/(m + m2) 

Using (3-2), (3-5) and (3-9) in (3-8) and solving for f yields 

f = m p2[- T6 /m + fa l/m - fq fi2 + (t - g $4 + g 2821 /(m + m2) 

bt 5 Lt - D y +Dtet t = l , 2  t t  where 

(3-7) 

(3-8) 

(3-9) 

(3- 10) 

(3- 1 1) 

Utilizing (3-9) and (3-10) in (3-3) and (36) and solving simultaneously for b and 8 1 2 results in 

el=I1/(AB-C 2 )1{T61B(mlgl + m 2 t 1 )  -Cm,p21/M+fadIC&M+B[S1 -9(tl-gl)/Mll 

+ L21Bml(tl - gl)/M - + mlar/M1 1 (3- 12) 

where 

A = J1 + m lm2( t l  - g1)2/M 

B=++mlm$PM 

C=m1m2(L1 -g1)g2/M 

and M = m l  +m2 

60 



Utilizing the following standard aerodynamic terminology for the terms in f given in (3-11): at 
Lt = Cbtqs'a = p 0 L i  

D = CDqS' 

where q = p # / 2  

~ r = e  - 7  

Y = vy /v  

I VI constant 

results in 

fat = pfi(e, - v Y i  /v) t = I , 2  (3- 14) 

where pft = q. S! (C z z hi +'DZ) 

It is desirable to write the equations of motion in a form that w i l l  facilitate the extraction of the 

simplified problem from the exact problem. For this purpose, we define a new set of wriables: 

c) = [(A + C)e , + (B + C)e,l /(A + B + 2C) 
av 

CP = (82 - e,) (3- 15) 

vav=  W l y  + Y 2 y  - ml?? (.e 1 - 9  1 + 92 )(i 2 - Q,)/MI/M 

In terms of these variables the equations of motion ccln be written in the vector matrix form 

where 

X= B =  

(3- 16) 

-9 
0 

4 
0 

9 
0 

L 
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0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

h 

0 

b 
0 

W 

0 



2 - ‘aJT0T +g2(A + C)(Tm2 - Dim2 + D2m1)/M]/(AB - C ) 

2 
q = T b y 2 ( A  + C) - (m 1g + m2t1)(B + C)1 /M(AB - C ) 

where - 
s 1  = s 1  - m2(L1 - 9 1  +g2)/M 

ML = PLl + PL2 

The block diagram f a  (3-16) i s  shown in Figure 3-2. Thg heavy lines denote the rigid-body 

dynamics; the contribution to the motion due to the flexibility i s  indicated by the lighter-weight 

I ines. 

The controller to be designed wi l l  minimize the following perfomanoe index 

where 
P 

T = terminal time 
2 K = weighting factor 

av 
M = total moment about the mean center of gravity 

(3- 17) 
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The perfomnce is thus measured by the sqwre OF the drift at the terminal time plus a p i t i v e  

constant timesthe integml of the bending moment sqwred. This performance index chosen i s  

essentially a penalty function approximation to minimizing thesqwre of the terminal drift subject to 

an upper limit an the square of the average m m n t .  The penalty function method has previously 

been effectively used to handle inequality carstmints [ 101 . From a practical standpoint, use of 

(3-17) w i l l  result in a linear controller in which the gain progmms can be computed with l i t t le 

difficulty. 

F = fisk 

Writi% (3-17) in vectormatrix notation facilitates subsequent computations. In this notation (3-17) 

becoml 

(x'Fx+x'L'u +u'Lx +u'Gu) a] (3- 18) 
= T 1 [x' (T)RX(r) + t fT 

2 0  0 0 0 0 0 

- P U h  0 0 b C 
PU 

- b/v  0 0 b 

where 

0 0 0 0 0 0  

0 1 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

R =  [ 
0 0 0 0 O I  

C 

2 2  
and G = p,k 
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The exact Hamiltonian is 

h =  (pd2){x'[J'R +RA + F] x +x'(RB + L')u +u'@'R + L)x +u'Gu) + p'(,Ax +flu) (3-19) 

The Maximum Rinciple yields 

1 u=-G'- [(B'R+L)x+fl'p/pOI 

Utilizing (3-20) in (3-19) results in 

h=@d2)x'[(.A' -L 'G- lS ' )R+R(~- f lG- lL )  - w G -  j3'R-L'G-1L+F]x 

- ( 1/2 po) p' jl G- 'g ' p + p' [.A - B G- (13 ' R + L)] x 

The corresponding canonical equations are given by 

BG-ls' ] [ :] (3-21) 
- ~ G - ' B ' R  +L) 

Q - [A' - (RB + L')G-lp'] 

where Q=(JV -LG- 'B,)R+R(A-~G-'L) -R&'R-~G-'L+F 

Since x u )  i s  free, the boundary conditions are 

p m  = 0 

except PO(T) = -1 

The submatrices of (3-2 1) are given by 

(3-22) 

(3-23) 
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and 

The above matrices have been partitioned so that the upper left-hand 4 x 4 motrix is  that resulting 

from the rigid+ody dynamics. 

For subsequent use, it is desirable to write the 6 equations of (3-21) in component form: 

0 p = o  (3-2w 

aT% w Haq ) 
6,=-P0x2+P,(d1+-)-P* + P&-- 

WC " 4" 
(3-26b) 

6, = 'Po" 1 (3-26c) 

b3 = -P4 (3-26d) 

(3-26e) 
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2 z 
Simplified Problem - Letting w -, 
remain finite during the tmnsition requires that x and hence x approach zero. Inspection of 

6 5 
(3-26g) with the above reasoning results in the conclusion that p 5 
simplified system i s  of fourth order. In accordance wi th  the theory developed, the state of the 

complete process i s  represented by 

in (3-16) and further requiring that the product w x6 

tends to zero. Hence the 

x = x + s  

- -  
V 
av 

”a v 

e’ 
av 

e 
av 

0 

0 
- d  

where 

X =  

Thus (3-16) i s  reduced to the simplified equations of motion by taking only the first four elements 

of the exact state vector: 

The block diagram for the simplified system i s  obtained from Figure 3-2 by removing the portion shown 

by the lightweight lines. 

The optimum control law (3-20) is written as 

2 
= + qpS/(pck) - bx5 + “6)/pC 

where U is the optimum control law for the simplified process, which, from (3-a), i s  given by 

(3-28) 

(3-29) 

68 



The exact canonical equations, given by (3-21), include those of the simplified ~ ~ o b l e m .  The 

simplified canonical equations are given by 

where H,, , H 12 and H 
@-25) respectively and H'22 = -H ,, . By assuming a time-inwriant model, the coefficients of 

the HtJ in (3-30) are constant and the solution to (3-30) i s  obtained by use of the Laplace trandorm- 

In particular 

are given by the partitioned 4 x 4 elements of (3-231, (3-24) and 21 

\ 

Hence the solution to (3-30) for [XO),  pO)] in terms of a starting state [X(t), P(t)] can be 

written as follows: 

where 

3 ( T - t ) =  

is  the "fundamental matrix [ 1 1 1  corresponding to (3-30). 

constraints on the state vector, the costate vector i s  identically zero (3-22). Hence, i t follows 

from (3-31) that 

Inasmuch as there are no terminal 

(3-3 1) 

(3-32) 

(3-33) 

and T = T - t (timetogo) 

Performing the operations indicated in (3-33) results in 
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1 
A 

M=- 

where 

8 X ( l  - e  )f2 8 -8 X ( l  - e  )fl 1 - e  8 (1 - e )(I - e 2 1  

c 2  5 c 2  c 

2 8  X e flf2 
e 

Xe fl 
8 

X ( 1  - e  )fl 

2 8  X e f,f2 

c 
2 8  2 - - X  e f 2  

8 
8 X ( l  - e  )f2 

c - X e f 2  

- - 
6 = cT (dimensionless time-to-go) 

-8 f = e  - 1 + e  2 

and 

where a~ 'TOT 
Pc Mg 

T ) = - = -  

Substitution of (3-34) into (3-32) and the result into (3-29) gives the following 

control law for the rigid-body 

(3-34) 

expression for the 
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(3-35) 

A study was undertaken using the equations of motion (3-27) and the associated optimum control law 

(3-35) in order to determine acceptable wlues of the parameter K which weights the moment in- 

tegml to the drift in the performance index. The vehicle parameters which were used in this in- 

vestigation are given in Table 3-1. The result was that for K lying between one and two, both 

the terminal drift and the maximum inflight moment were acceptable. For K near zero, the terminal 

drift was least, but the maximum inflight moment was unacceptably large; while for K of five, the 

terminal drift diverged. 

Quasi-Optimum Controller - The quasi-optimum control law i s  now constructed from (3-28). I t  i s  

noted that, since the exact costate vector has six components and the simplified problem was of 

fourth d e r ,  the m and m terms of the gain matrix M ( T )  , now 6 x 6, must be found. 

Since p 

with p = O  5 

55 6t 
= 0. Hence, from (3-26f) m5t was previously shown to be zero in the simplified state, 5 

p = (4 - ap/pc,pl (3 -36) 6 

where P1 i s  known from (3-32); mM i s  still undetermined but i s  not required in the quasi-optimum 

control law since p6 does not appear. The full gain matrix M(T) can thus be written as 

M(T) = 
(3-37) 

i 
where the m (i = 1 , 2, 3 ,  4) are given in (3-34). %J 
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Thus, substituting (3-37) into (3-28), the quasi-optimum control law i s  

_ _  b aTb.,. (3-38) 

where U is given in (3-35). 

To verify the acceptability of (3-38), u simulation of the motion of the flexible vehicle (3-16) using 

both the simplified control law (3-35) and the quasi-optimum control law (3-38), with K = 1 , was 

performed with the aid of an IBM 7040 digital computer. 

The final results for w = = (rigid body), ~ r :  = 20 and w = 10 are shwn in Figures 3-3 through 

3-6. It i s  interesting to note the behavior of the control signal (Figure 3-5) with regard to the 

angle of flexure (Figure 3-6). The quasi-optimum control law seems to be tuned to vuriations in 

the angle of flexure, and aJmost 180 degrees out of phase with it. Note further that the simplified 

control law when used with the flexible vehicle does a better job as w grows. This is  to be ex- 

pected inasmuch as it is exact at w = = . As the system becomes more and more flexible (i .e., as 

w + 0) , the performance using the quasi-optimum control law deteriorates, again as expected: 

the quasi-optimum control law i s  only a first order correction to that for a rigid vehicle. For 

w 5, i t  w a s  found that the system behavior was not satisfactory; a l l  quantities ultimately diverged. 

The vehicle considered here was aerodynamically unstable (center of pressure was forward of the 

center of gravity). It i s  quite possible that with a more aerodynamically stable vehicle w could 

be made closer to zero and s t i l l  permit use of the quasi-optimum control law. 
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TABLE 3-1 

“1 

m2 

T 

V 

1 

C h 2  

‘D 1 

‘02 

92 

s 1  

s2 

’1 

’2 

pair 

T (terminal time) 

c, 

- VEHICLE PARAMETERS IN SIMULATION 

35 slugs 

15 slugs 

3800 Ib 

600 ft/sec 

2.66 rod.-’ 

2.66 rod.” 

-06 

.06 

3.125 ft 

6.25 ft 

1.67 ft 

0.833 ft 

0.667 ft 

2 114 slug-ft 

48.8 slug-ft 

.00237 slugs/ft 

2 

3 

2 

2 

1.4 ft 

1.4 ft 

10 

5470 Ib-ft ( w =  10) 

15790 I M t  (w= 20) 
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0. 
0 

!k 

0 

TIME 
( b ) w  = 20 
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FIGURE 3-3 
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74 



-1 20 

-40 1 

CONTROL 

c 
6 7 6 9 IO 

> 

QUASI -OPTIMUM 

- s o l  
[c) o = I O  

AVERAGE AERODY N AMlC MOM EN1 
FIGURE 3-4 

75 



. 

.IO t 

$06 

-.IO 

t 

( b )  w.20  

8-"8 
2 1  -10 

CONTROL DEFLECTION 
FIGURE 3-5 

76 

(c) w910 



.IO 

u) .05 

Q 
n 
a 
- 0  

2 

a 

F 
$ 
*-.os 

-JO 

(b) u =  IO 

ANGLE OF FLEXURE 
FIGURE 3-6 

77 



2.4 TIME-OPTIMUM 3-AXIS ATTITUDE - CONTROL OF A SPACE VEHICLE 

Another problem which was begun was that of controlling the attitude of a space vehicle in which the 

gyroscopic coupling torques are small but not negligible. 

Exact Problem - The equations governing the motion of the vehicle are taken as 

det/dt = ut t ,j , k = 1 , 2 ,  3 

(4- 1) 
dwt/dt = [ ( L  ' l k )6 t j uk  + C t f t ] / l t  J 

where 

e t  = x = angular position t = 1 , 2 , 3  t 

ut = x =angular velocity t = 1, 2 ,  3 

I 

3+t 

= moment of inertial about the principal a x i s  

= moment arm of jet control 

= thrust of iet control 

c t 

f t 

The thrusts are assumed to be bounded in amplitude: 

t = 1,2,3 (4-2) If,(t)I 5 Mi 

The crossaxis inertia ratios Q j  -I k)/I 

by additional state wriables 

are assumed to be s m a l l  but nonzero, and are represented 

X 6+$ = @j - I k ) b j ,  t = 1 , 2 , 3  (4-3) 

Introduction of time as the performance index which i s  to be minimized produces an additional state 

variable x (t) = t. Hence the state equations can be written as 0 
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io = 1 

il - - x 4  

x2 = x5 

i g  =x6  

'4=x f f6  + k 1 u 1 (t) 

= x x x + k2u2(t) '5 8 6 4  

x + k u (t) 
x 6 - x d ( 4 5  3 3  
- -  

2, = i g = i , = 0  

where 

kt = c t M t / I  
t = 1,2,3 

Iu,(t)l. 1 

The Hamiltonian f a  the exact system i s  

h = p  + p x  + p x  + p x  + p u k  

+ p u k  
+ pf8x6x4 + p5u2k2 + p6x9"4x5 

0 1 4  2 5  3 6 + P 8 f f 6  4 1 1  

6 3 3 

where 

= b, = b2 = b3 = 0 
i'0 

Q nd 

(4-4) 

(4-5) 
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The Maximum Principle yields the folIo&ing control law 

u, =sgn & 1 ~ 4 !  

'3 'gn (k3P6) 

Simplified Problem - The simplified system i s  defined by 

x7 =x8 = x 9 =  0 (4-9) 

Thus, for the simplified system the three axes are uncoupled, and from the solution to the well-known 

Bushaw problem, we have the solution to the simplified problem 

U 1  =sgn k, ( -  P (T - t) + Pa) 

U2 = sgn k2(- &(T - t) + Pa ) 

U3 = sgn k ( -  P (T - t) + Pm) 

10 

3 30 

(4- lo) 

where Pt , t = 1 , -. . , 6, are the adjoint variables for the simplified system. 

Quasi-Optimum Control Law - The quasi-optimum control law i s  given by 

1 = 'gn [k 1 ('4 + m47X7 + m48 '8 + m49xdl 

(4.11) 

P5, P6 are adjoint variables of the simplified system defined above, and the m are 
tJ 

where P 4' 
components of the gain matrix M which is obtained by finding the fundamental matrix for the 

auxiliary system ( 20 ) the coefficient matrices of which are given by 
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. 

HXp= 

- 
0 
0 

0 
0 

0 

0 

0 

0 
0 
-0 

0 0 0 0 0 0 0 X 6 X 4 O  

0 0 0 0 0 0 0 o x 4 x s  

0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 -  

- 
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 P5X6 P6X5 

0 0 0 0 0 0 0 P4X5 PZ5 0 

0 0 0 o P ? 6 0 P g x 4 0  0 0 

0 0 0 0 P6XS P6X4 0 0 0 0 

0 0 0 0 0 0 0 P4X6 ’6‘4 

0 G 0 0 0 P4X6 P4X5 0 0 0 

t 

(4- 12) 

(4- 13) 

(4- 14) 

81 



- i 

0 0 0 0  0 0 0 0 0 0  
0 0 0 0 0  0 0 0 0  0 
0 0 0 0 0  0 0 0 0  0 

0 0 0 0  0 0 0 0 0 0  

0 0 0 0 2k16(k1Pq) 0 0 0 0 0  

Hpp= 0 0 0 0 0 2566(k25) 0 0 0 0  

0 0 0 0  0 0 36O55Ps) 0 0 0 

0 0 0  0 0 0 0 0 0 0 ° {  0 0  li 0 0 0  0 0 0 0 0 0  

0 0 0  

i 

(4-19 

These equations can be integrated by using the same procedure as used in the quasi-optimum solution 

to the Bushaw problem. Assume that the solution to the simplified problem i s  

"i 

- l J i  
u. = \ 
L 

S i  

S i  

t <  t 

t >  t 
id = 1 , 2 , 3  (4- 17) 
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and that t < t ts3 . Then the fundamental matrix @(T, 0) for (4-16) i s  

+ + -  - +  + -  - +  + 
s l  s2 

J o )  = @fl 8 ts3)@(ts3, ts3)Q(tS3, ts2)@(ts2, tS2)@(ts2, tsl)@(tsl, <I)@(<,, 0) 

where 

O <  t < ts,< t e T .  s l  s3 
+ -  

The matrices 

of the first example, i t  i s  found that 

O(tSt, t .) contain terms resulting from the impulses in H,, . Using the method 
52. 

(4- 18) 

(4-19) 
+ -  

e21(tsi, tst) =o ,  i = 1, 2,3 

+ 
and that the elements of el2(tst , t' ) are a l l  zero except for the element in the (4 + t , 4 + t) S t  
pasition which i s  2Ut/Pt. Furthermore, it can be shown that, i f  T = t - t 
t s t 5 <(t+l) , ts4- T , tsO = 0 , then 
S t  

+ 
, t = 0, 1, 2, 3 , 

S i  
- + 

(4-20) 
+ 

where 
1 0 0 0 0 0 0 0 0 0  

0 1 0 0 ~ 4  0 0 q 7 0  0 

0 0  1 0  0 I s  

o o o l o o @ 3 ,  O O @39 
0 0 0 0 1 0 0 @ 4 7 0  0 

o o o o o o l o o ~ 6 9  

$ 8 '  

0 0 0 0 0 1 0  0 0 

0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 1 0  

- 0 0 0 0 0 0 0 0 0 1  

(4-2 1) 
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q2 = 0 (4-22) 

*21 = 

- 
*22 - 

- 
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 'a'49 

O '59 0 0 0 0 0 0 0 '9 
0 0 0 0 0 0 0 '67 '68 0 

o o o o o ~ 7 5  '76 '78 '79 

0 0 0 0 '84 '86 '87 '89 
0 - 0 0 0 0 '94 '95 '97 '98 

1 0 0 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 0  

o ' 4 1 0 0 1 0 0 0 0 0  

0 0 0 '63 

0 0 1 0 0 0 0  

0 0 1 0 0 0  

0 0 1 0 0  

0 0 1 0  '85 
0 0 1  

'52 

'71 '74 

@82 

0 0 0 '93 '96 

(4-23) 

(4-24) 

where, if Xt and Pt denote the wlue of the state and adjoint wriables at the beginning of the 

interwl and Ut denotes the wlue of the control (either positive or negative according to (4-17)), 

then 

e14=T 

4 1  3 1  2 ' 17 = 4 k2k3U2U3T + r(X6k2U2 + x&3u3)z + X#br 

'25 = 7 

4 1  1 2 
' 28=-  k 1 3  k U 1 3  U T + a(X6k lU + X4k3U3)~3 + T X4X67 
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* = = 7  

= -k 1 
*39 12 1 2  1 2 

*47 3 2 3  2 3  

k U U T 4 1  + g(X4k2U2 + X$ lUl)~ 3 1  + T Y ~ X ~ T  2 

= -k 1 k U U T 3 1  + T0(6k2U2+X$3U3)T 2 + X r 6 ~  

= -k 1 k U U T  3 1  + T(X6k1U1+X4k3U3)72+X X T 

@69 = z k  1 lk2U 3 1  + y(X4k2U2 + X& l U 1 ~  2 + X4X5~  

= -k 1 U P T  3 1  - T( - X6P2 + k3U3Pg)r2 - P,+6~ 

ed9= Tk2U2P3T 1 3 1  - T(- X P + k U P )r2 - P6X57 

= -k 1 U P T  3 1  - 3 ( - X  P + k  U Ph2-P4X67 

= -k 1 U P T 3 1  - p (  - X  P +klU1P6h2 - P6X4r 

= -k 1 U P T  3 1  - # - X  P + k  U P h 2 - P 4 X 5 ~  

-k 1 U P T  3 1  - $ ( - X  P + k  U P h 2 - P 5 X 4 ~  

*58 3 1 3 1 3  4 6  

*48 3 3 3 2  

5 3  2 2 6  

*41 = T 

*57 3 3 3 1  6 1  3 3 4  

*59 3 1  1 3  4 3  

e9=-7 

' 6 7  3 2 2 1 5 1  2 2 4  

3 1 1 2  4 2  1 1 5  

*63= -7 

*75 3 3 3 1 2 3 3 4  

-k 1 u P T 3  - l ( k  u P - * 7 6 = 3  2 2 1 2 2 2 4  

= -k 1 U P 73  - !-(k U P - PlX6h2 - P4X6~ 

- P4x5T 
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1 2  1 6  = - k  [ P k U  - P k U ] - - 7  '78 3 3  1 1  1 2 2 2 6  
1 5  P + 5 k U  U P X ]  T 1 1 2  5 

+ [k324x4p1 - 5 '55' - 3k3k 1'15 ' $kikrU25 - &2u2k3u3% 2 

+ [-k (X.  P - P4X4) + (k U )[-X P X - -X  X P + P1X4X6] 

1 15 3 1 6 3 
1 2  1 5 
2 3  5 5  3 3  2 4 4 6  6 5 6 2  

2 1  3 1 4  - 1 k  u P X  +-k U P X 2 - z k  k U U P X  +-k k U U P I-T 2 2 2 2 6  2 1 1 4 6  6 1 3 1 3 4 6  2 2 3 2 3 8 6 4  

+ [- i k  ,U P4X6 2 3  +Jk3U3X6( - P4X4 + PZS) + k2U2Xi P5 + $P X 1 
1 3  --x P)] --7 1 4  2 5 2  3 

'6 2 
+ P5X5 - P 4 X 4 1 2  7 

1 2  1 6  -k ( k U  P - k  U P)- -7 '79=3 2 1 1 1 3 3 3  6 

1 5 1 1 5  
I + fi;(ipIx4 - 35%) + g k 1 ~ 1 5 ~ 2 ~ , ~ 5  + fa$$% - TkluI(5 - &53~3~~~315~  

+ [$ki(x65 '45) + $u2@1x4x5 - g y 6 5 )  - zkl$U1u*$% 5 

1 2 1 4  + g k  k U U X  P +-k U P X 2 - i k  U X ]  -T  

+':k2u2(!5x6%- PXX)+$u jpgXz-  4 4 5 $klUlP4X5- 2X5X6P3+X4X5P1]3~ 

I 2 2 3 2 3 5 6  2 1 1 1 5  2 3 3 , 5 4  
I 2 1 2  2 1 3  

2 2 7  
+ [ -  p4x4 - X6P61X5 2 
1 4 1  3 1  2 

= -k k U U T + T(X6k2U2 + X5k3U3)T + -X 2 5 6  X T '71 4 2 3 2  3 

= - -k k U U T - X5X67 

= -k U P 7 - -(k U P - P X ) T ~  - P5X67 

I 

I 
1 3 1  - T(X6k2U2 + XSk3U3)7 '74 3 2 3  2 3 

1 3 1  
'84 3 3 3 2  2 3 3 5  2 6  

@86 = YklUlP2' 1 3 1  - -(k U P - P 2 X 4 ) ~ 2  - P5X47 2 1 1 5  
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6 
1 2  7 

' 8 7  = 3 k3(k2U2P2 - 1' l P 1 ) T  

5 2 7  
+ I- ~ l~u lyP l% + i+%u2y5% + <($5~g - f ~1x4) - $+u&~s + & + J ~ ~ P ~ I - ~ -  

+ [k u (?x 1 2 
3 3 2 # 6 2  6 1 4 6  2 2 2 2 6  2 1 1 1 6  

p - 2 P  X X + -k  U P X2 -1k  U P X 

4 
+-k k U U P X --k k U U P#6+Tk3(P4X4- P#,JIT 

3 5 1 2  7 

2 1 3 1 3 4 6  6 2 3 2 3  

1 3  
+['3'3$ '4'4'6 - '2X5P#6) 3 - l k  2 2 u 2 x2p 6 5 t k  1 U 1 P X 2  4 6 +p2X,&-#lX4] 57 

2 

5 6 2  
2 7  + [P4X4 - P+ I X  - 

6 

@ 8 9 = 5  1 2 2 2  3 3 3  6 
7 ' kZ(k  U P - k  U P ) -  

+ Ik:(;5'5 - 55%) 1 - gklkjUfS!3X4 5 + 5 k  b 1 5  U ?2 PX 2 4 - - k $ ~ P 5 + ~ k , k & ~ l i j ~  3 1 

+ [k lu1(~p2xqx5 '~p3x4xd 3 
5 

+3k  2 1 3  k U 1 U 3 P X  6 4 --k 6 1 2  k U 1 U 2 P r 4  

+ -k  1 2  (PX - 1 k U P X  + k U P X ]  T 

1 2 2 

1 2  1 2  1 5  

5 

2 1  2 1  4 
2 1 6 6 - ' # 5 )  2 3 3 3 4  ' 2 2 2 2 4 5  

3 

+ [:k 1u 1(X4X6P6 - x4x5pJ - 5k2U2X4P5 +k3U3X4 '6 + p2<% -: & 5 p 3 1 5  

2 2 7  
+ [ p6x6 - pfs] ' 4 2  

1 4 1  3 1  2 
=-k  k U U T +-(X k U + X  k U ) T  +5X4X67 

' 8 2 4 1 3 1 3  3 6 1 1  4 3 3  

1 3 1  = --k k U U 7 --o( k U + X  k U ) r 2  -X4X6T 
'85 3 1 3 1 3  2 6 1 1  4 3 3  

1 3 1  =-k U P T --(k U P - P3X5+r2 - P6X57 

=-k  U P T --(k U P - P3X4)r2 - P6X4T 

t '94 3 2 2 3  2 2 2 6  

1 3 1  
'95 3 1  1 3  2 1 1 6  
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1 2  1 6  
= - k  (k U P -klUIP1)gT '97 3 2 3 3 3  

P - - P X X ) - ? k k U U P X  5 + - k k U U P X  3 
+[k2U2(TX#63 6 1 4  5 6 2 3  2 3 6  5 2 1 2  1 2 4  5 

n 

1 4 1  3 1  2 
=-k k U U T +-(k U X +k2U2X4b + T X ~ X ~ T  '93 4 1 2 1 2  3 1 1 5  

= - - k  1 k U U T 3 1  -T(X&lU1 +X4k2U2)~2 - X4X57 '96 3 1 2 1 2  



The matrix @ (TI 0) , the (12) - component of @(T, 0) given in (4-18) has been calculated. Its 12 
A 

elements @ are a l l  zero except t J  

t (t + ts3 + T) 
A u1 
022 = -2  - P1 s l  s2 

3,, = 2 -  P, ($2 + 's3 

G33 = -2 -0 +ts3Ms, + t*2) 
u2 

p2 

u2 =2-( t  + T )  $36 P2 s3 

P3 T(tS1 + 's2 + $3) 

u3 

p3 
8,, = 2T - 

u1 G5, = 2 - 
p1 

The other components of @ ( T I  0) can be found similarly. 
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2.5 MINIMUM LATERAL MISS-DISTANCE REENTRY 

The problem of minimizing the lateral miss-distance at impact of a maneuverable re-entry vehicle i s  

another problem which was considered. The problem was formulated in two dimensions over a flat 

earth in a uniform gravitational field. 

Exact Problem - The relevent equations of motion are 

G X = -cdsp vvx - C& sp vvy 

where 

G = c, sp vvx - CdSP v v  - g 
Y Y 

x = v  
X 

i . = V  
Y 

V = ( v  2 + v )  2st 
X Y  

x , y = coordinates of the vehicle, y being the altitude 

v , v = components of velocity 
X Y  

C, = l ift coefficient 

C = drag coefficient d 

S = 3 (reference area/mass) 

p = density of the atmosphere 

g = gravitational acceleration 

The control vuriable was chosen as the l i f t  coefficient C 

magnitude, hence 

which was assumed to be bounded in 4.. 

1 (5-1 ) 

90 

u =c,; IC&l< r)  (5-2) 

The drag coefficient C was assumed to wry  as C d = ~  +kC, , where c and k are constants. 
d 

The density was assumed to vary exponentially 

P 'Pee -B Y (5-3) 

where p 

such that x (T) i s  a minimum when y o )  = 0 , where T i s  the terminal time. The variables 

vx(T) , vyo) x o )  and T are treated as free variables. 

and B are constants. Hence, the problem reduces to finding a feedback control u 
O 2  
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. 
'By defining the state wriables 

2 
x o = a x  x l = x J  x 2 = y ,  x 3 = v x J  x 4 = v y J  x5=SpV, x 6 = k  

the equations of motion can be rewritten as 

xO = lX3 
* -  
x 1  - x 3  

x2 - x4 
0 -  

i c g = - ( c + x u ) x x  2 
6 3 5 -ux4x5 

2 
=ux x - ( c + x  u ) x x  x4 3 5 6 4 5 - '  

2 2  
5 6 5 4 5 4  ic = - ( c + x  u )x  ' X  x ( - 9 - + p )  

ic6 = o  

(5-4) 

(5-5) 

Forming the exact Hamiltonian we have 

2 2 B [- (c +X6U )x  -ux ] + p  x (ux - (c + x  u )x  - -1 3 4 4 5  3 6 4 x5 
!5-4 

2 
-Pf5 [ (CfX6 '  l x 5 +  

Applying the Maximum Principle yields either 

when 

3 a6 ' [P3x4 '3'3 + - p4x3 p4x4 + p f 5  
u = - -  (5-7) 

(5-8) 

when either of the conditions in (5-8) are violated. It i s  convenient to define the switching function 

The value of the control u i s  assumed to be sufficiently large so that m l y  solutions on the boundary 

(i.e.? of the form (5-9)) wi l l  be considered. 
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Simplified Problem - For the simplified system it i s  assumed that the coefficient k i s  zero, and that 

the term, Sp V i s  constant, and normalized at unity, i ~ . ,  

x = 1  
5 

x6= 0 

The state equations for the simplified system are then 

xo = x  x 

il  = x  

i = x 4  

x = - c x  -ux4 

2 =ux - c x 4 - g  

1 3  

3 

2 

3 3 

4 3 

where at  the terminal time T 

(5- 10) 

(5- 1 1) 

X2(T)= 0 

The Hamiltonian for this system i s  

P1 = -P x 0 3  
P = o  2 

P3 = -x 1 0  P - P1 +cP3 - UP4 

P4 = -P2 +UP + 3 cp4 

with boundary conditions 

Po@) = -1 

= P3(T) = P4(T) = 0 
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j 

I 
The optimum control for the simplified system i s  

U = I) sgn (P3X4 - P4X3) i (5- 14) 

I where the switching function i s  defined by 
I 

A = P3X4 - P4X3 (5- 15) 

Defining s = T - t where t is  the current time, and T i s  the independent time wriable, and 
I I 

a = L  
2 2  

c +r)  

d 
rl 'fr) 

I 

The solution of (5-1 1) in any subintervul f~ , t] 

~ ~ ( 7 )  = e 

x ~ ( T )  A e *I[X,(t) +a$'] sin ;is + IX4(t) - a c ]  cos ;is> + ca 

Xi@)=. [ -Acas$+Bs inqs ]  - ? jas-A+Xl( t )  

X2(T) = e 

in which U may be taken as constant i s  given by 

-cs 
{[X,(t) +a%] cos 5s - {X4(t) - a c ]  sin 'ijs 1 - ;a 

-cs 

'CS 
[A  sin ;is + B cos 51 + cas + B + X2(t) 

(5- 16) 

Consequently, in any sub-interval in which U is  constant,the solution i s  only a function of the 

state at the beginning of the interml and the length of the intervul. At the terminal time, the states 

X 
2 3 4 

and the number and duration of switching interwls; hence there exists a transformation f such that 

X2(T), X3(T), X4(T) depend only on the initial conditions Xl(t) , X (t) , X (t) , X (t) , 

t 
where t i s  the t t h  switching time. The solution of the adjoint in a sub-interval [ t  , T ]  in which 

U i s  constant is given by 
- S 
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where 

P2(t) = P = constant 2 

cs 
P,(t) = e ((P3(7) - A(T)) cos G s  + (P4(7) - B ( 7 )  sin $SI + A(T) 

cs P (t) = e 4 ((- P3(7) +A(T)) sin z s  + (P4(7) - W)) cos + B(7) 

s = t  -7 

(5- 18) 

At any time t , the adjoint P(t) i s  determined by the terminal time T, the t switching times 
i 
t 

S 2 '  
transformation g such that 

between t and T and the value of the adjoint Hence, it i s  possible to define a 

(5- 19) 

Substituting (5-17) in (5-18) gives the transformation 

A possible algorithm for determining P(t)  given X(t) would involve the following steps: 

1. Assume that between t and T there are no switching times. 

2. Compute T from X (T) = 0 ,  and compute X(T) from (5-17) and p2 from H(X, P, T) = O m  
3. Compute P(t) from (5-18). 

4. Compute A(T) from (5-15). I f  ~ ( 7 )  # 0 for t < 7 < T, then P(t) i s  the required solution. 

2 
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- 5. If the switching function A(T) passes through zero, then detennine those times 

t i t 
switching times. 

6. Compute the times T 

i = 1, . . . , k at which &(T ) = 0 and repeat steps 2 and 3 with these values as 

for which A(T;) = 0. If these times T! are the same as T t 2 t then 

P(t) i s  the required solution. 

7. If the times r' are different from then repeat steps 2, 3, and 6 using r' t t 
The procedure works if the converge to the rt . 

Quasi-Optimum Control Law - The quasi-optimum controller i s  given by 

6 
u = 71 sgn Ex5tx3P4 - x 4 5 )  + x5t' (x3Mt4 - x4Mt3)l 1 

and Mt4 are columns of the matrix Riccati equation (19) and (= x - X %3 

In this case the coefficient matrices are given by 

"PX = 

+ ?-I6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

x3 
0 
0 

0 

0 

0 

0 

0 
0 

0 
0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 
0 

0 
0 

0 

0 
0 

x1 
1 

0 

- c  

5 

W 3 X 4  

v4 
0 

0 

0 
0 

x4p4 

- 5% 
0 

0 

0 
0 
1 

-7) 
N 

- c  

2 
29x4 

v4 
- 

0 

0 
0 
0 

- %p4 

x35 
0 
0 

- (2c + x  ( L + B ) )  4 v 2  
0 

0 0 
0 0 

0 0 
0 0 

0 0 

0 0 

0 0 

in place of T t' 

(5-2 1) 

0 

0 

0 
2 

-7) x 

- v2'! 

2 
-7) 

0 

(5-22) 
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HXX = 

'0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 

1 

0 

0 

0 

('Cp3 ' 5 5 )  

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 - v  p3 

0 
0 

0 

- ?  

p3 p4 

4 

0 

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 
0 
0 

55 
- ?  3 

0 

0 

0 

0 

-2 4 

>sx4 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

>sX4 

- x; 
0 

0 

0 " 1  0 

0 

0 0 1  

- r l  2 1  p4 

0 -+35 t x  4 4  P )  1 

0 0- 
0 0 
0 0 

0 0 

0 0 

0 0 

0 0- 

(5-23) 

where 6 (d i s  the delta function and V =  ( X  2 + X 2 *  ) 
3 4  

Because the coefficient matrices of the Riccati equation are time dependent, the auxiliary equations 

cannct be solved analytically. The components needed for the quasi-optimum controller (5-21) ccn 

be determined by either finding an asymptotic solution to 

equations backwards in time. The boundary conditions for the integration as determined by (27) 
and (41) are 

(19) or by numerically integmting the 
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(5-24) 

In the process of solving for the adjoint qt) , the terms needed to compute M(T) are determined. 

Hence, a procedure for determining the quasi-optimum correction would consist of first determining 

the adjoint P(t) given the state X(t) , and simultaneously computing the terminal conditions 

(5-24). The Riccati equation can then be integrated backwards, and the qwsi-optimum control 

determined by (5-2 1). 
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2.6 ADAPTIVE CONTROL 

Combination of the technique of quasi-optimum control of the mildly nonlinear process 

ic = Ax + pf(x) + Bu (described in Section 1.7) with the Kalman filtering technique to estimate 

the small parameter p results in an l’adaptive” control system. 

Problem Statement - Consider the problem of minimizing 

V =  xo(T) = (x’Rx + u‘Qu) dt $‘ 
where T i s  fixed, Q and R are positive-definite matrices and the process is  governed by 

where p i s  a small parameter. 

This problem has been solved using the quasi-optimum feedback control technique in Section 1.7 

to yield the quasi-optimum control law 

where 

- K = KA + A ~ K  + K B Q - ~ B ~ K  - R 

a nd 

K(T , T)= 0 

- i = L(A + B Q - ~ B ~ K )  + (A’ + KBQ-’B‘)L + KF + F‘K 

Using the above control law the closed loop system becomes 

x = (A + BQ-’B,K)~ + M ( ~  + B Q - ’ B ~ L ) ~  (6-7) 

which can be represented by the block diagram shown in Figure (6-1). 

These results assume, of course, that the state of the process and the parameter p are known at 

a l l  times and that 

or p . Then a sensing device would be used to measure the state and an appropriate filter would 

construct a best estimate of the state x and the parameter u. The situation i s  as shown in 

Figure 6-2. 

is a constant. Suppose, however, we do not hove complete knowledge of x 
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*Development of Optimum Estimates - If we define 

c = A + B Q - ~ B ~ K  

D = F + BQ-'B~L 

then the process equations are 

i = o + w  
c1 

i = Gc + NDX + Wx 

(6-10) 

(6- 1 1) 

where the observutions are 

y = x + v  (6- 12) 

Suppose the stochastic process z(t) = {w(t), v(t)] 

function 

is a "white" Gaussian process with correlation 

where 6 (t) is a Dimc delta function, and 

TO obtain the maximum likelihood estimate of {p(t), x(t)) given y(t), define the following: 

Then the above process and observution equations become 
1 

(6- 13) 

(6- 14) 

(6-15) 

(6- 16) 

The maximum likelihood estimate of ;I given 7 can be obtained from the solution to the following 

two point boundary wlue problem. 
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where 

F(t) = 0 

F = [ 3  

* 

(6- 18) 

(6- 19) 

(6-20) 

(6-2 1) 

(6-22) 

- 
To solve the two point boundary volue problem, introduce the vector Z and the symmetric matrix 

P(7 ) 
- 
g(T) = Z ( T )  + P(T)F(T)  (6-23) 

which can be written 

(6-24) 

(6-25) 

(6-26) 

or, with 

P =  

we have 

k 
X =  (6-28) 
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d 
t 

e In expanded form, equations (6-27) and (6-28) becune 

a=P' Rl'(y-2) (6-29) 
CIX 

(6-30) 

(6-3 1)  

P = ( C + C D ) P  - P  R-lP + q  + P  D e  (6-32) 
P X  P X  xx crx P CICl 

P = (C + FD):, -t P (C' + CD') - P R*-' P + Q  + MP' 
x x  x x  xx xx xx P X  P X  

where (6-29) thru (6-33) give the optimum estimates to be used in the system of Figure 6-2. 

+ P 2'D' (6-33) 

I 
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CONCLUSIONS AND RECOMMENDATIONS 

On the basis of the results achieved in the examples considered, it is our conclusion that the quasi- 

optimum control technique described herein is a wluable tool for the design of practical feedback 

control systems. Like a l l  engineering methods, it i s  not a plnacea, and there are, no doubt, many 

situations for which other methods are more suitable. In order for our method to be applicable to 

a particular design problem, two conditions must be met. First, the actual process must be capable 

of being approximated by a simpler process, and, second, the exact control law for the simpler 

process must be found. Experience with the physical problem to be solved is  an aid to meeting the 

first requirement, and familiarity with the solved problems of optimum control i s  an aid to meeting 

the second. The successful application of the technique to a particular design problem, however, 

wi l l  ultimately depend on the user's ingenuity. We regard this as an asset, not a shortcoming of 

the technique. 

Although the correction matrix M can be expressed in terms of the fundamental (transition) matrix 

of a linear system or as the solution to a matrix Riccati equation, the analytical determination of 

the matrix is  at best an extremely tedious chore and may be impossible. As a consequence, either 

numerical integration methods or additional approximations wi l l  be required to obtain M . Since 

the numerical integration i s  performed off-line and i s  feasible even for systems as high as 20th 

order (i.e., 210 simultaneous ordinary equations)- perhaps even higher -this i s  a factor in the 

cost of using the method but, in our opinion, is  not a serious limitation. 

A major unresolved theoretical question entails the performance of the quasi-optimum control law. 

Suppose that the performance criterion to be minimized by the optimum feedback control law i s  

given by Lp . The performance P achieved by use of the quasi-optimum control law, while 

greater than VO should certainly be smaller than the performance v' achieved by using the con- 

trol law for the simplified process. Thus it should be possible to demonstrate that V < P 5 v' 
for a sufficiently smal l  mnge of 6 , which wi l l  be the range of wl id i ty  of the technique. The 

demoratration of this, and the estimation of the difference AV = VS - V 

further. Since the quality of performance of the quasi-optimum control law in any practical instance 

w i l l  almost certainly be established by computer simulation, however, the lack of knowledge of the 

range of w l id i ty  of the technique is not a handicap, provided the user is  optimistic enough to try it 

out. The limited number of examples considered in the study lead us to conclude that an optimistic 

0 

0 should be investigated 

3 
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viewpoint is justified. 

The stability of the quasi-optimum control law i s  another problem of major importance which 

should receive attention. This problem can probably be approached by the same techniques used 

to establish the performance of the quasi-optimum control law. 

From the theoretical standpoint, the other uses of the quasi-optimum control technique considered 

in Section 1.5 should receive more attention. In this regard it is also worth considering whether 

the analysis can also be used to develop a trajectory optimization technique which would be a 

generalization and a simplification of the technique described by McReynolds and Bryson [9J . 
More completed examples wil l  add practical insight into the adwntages and limitations of the 

technique. Consequently we recommend that the studies of multiple-axis attitude control, and 

reentry guidance, described in Sections 2.4 and 2.5, respectively, be completed, and the studies 

of the application of the method to other problems in guidance and control be undertaken. 
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